Double field theory and geometric quantisation

نویسندگان

چکیده

We examine various properties of double field theory and the doubled string sigma model in context geometric quantisation. In particular we look at T-duality as symplectic transformation related to an alternative choice polarisation construction quantum bundle for string. Following this perspective adopt a variety techniques from quantisation study space. One application is coherent state that provides shortest distance any duality frame stringy deformed Fourier transform.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-statistics theorem and geometric quantisation

We study the relation of the spin-statistics theorem to the geometric structures on phase space, which are introduced in quantisation procedures (namely a U(1) bundle and connection). The relation can be proved in both the relativistic and the non-relativistic domain (in fact for any symmetry group including internal symmetries) by requiring that the exchange can be implemented smoothly by a cl...

متن کامل

Geometric Class Field Theory I

1.1. The Artin map. Let’s start off by reviewing the classical origins of class field theory. The motivating problem is basically to “describe” in some meaningful way the abelian extensions of a number field F , or what is essentially the same: the abelianized Galois group Gal(K/K)ab (since its finite quotients are the Galois groups of finite abelian extensions of K). If we’re going to describe...

متن کامل

Geometric Structures in Field Theory

This review paper is concerned with the generalizations to field theory of the tangent and cotangent structures and bundles that play fundamental roles in the Lagrangian and Hamiltonian formulations of classical mechanics. The paper reviews, compares and constrasts the various generalizations in order to bring some unity to the field of study. The generalizations seem to fall into two categorie...

متن کامل

Geometric Class Field Theory Ii

Homcts(π1,ét(C),Q × ` ) ∼= Hom(Pic0(k),Q` ) + (Ẑ Frobc −−−→ Q` ). where c ∈ C(Fq) is a fixed rational point. Our proof will proceed by upgrading this equality to an equivalence of geometric objects. First, we’ll interpretHomcts(π1,ét(C),Q × ` ) in terms of rank one `-adic local systems on C. Similarly, we’ll interpret the datum of Hom(Pic0(k),Q` ) + (Ẑ Frobc −−−→ Q` ) as a “character sheaf” on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep06(2021)059